진로체험

아두이노 시뮬레이션 1차시

www.helloapps.co.kr

070-4417-1559 / splduino@gmail.com

아두이노는 컴퓨터인가?

컴퓨터 vs 마이크로 컨트롤러

컴퓨터와 마이크로 컨트롤러 (마이컴)은 서로 다른 장치임

컴퓨터 (PC)	마이크로 컨트롤러 (마이컴)
▪ OS가 부팅된 후, 어플리케이션 SW가 실행됨	 전원이 연결되자 마자 메모리에 있는 SW가 바로 실행됨
	 다양한 전자 기기에 내장되는 형태

일반적으로 알고 있는 아두이노 우노 보드는 대표적인 레퍼런스 보드 중에 하나임

아두이노 보드의 구성

USB 케이블을 통해 프로그램을 업로드 하거니 PC와 데이터를 주고 받음

아두이노 보드의 구성

아두이노의 디지털 명령어를 사용하여 디지털 핀에 연결된 센서의 값을 읽거나 씀

아두이노 보드의 구성

아두이노의 디지털 명령어를 사용하여 디지털 핀에 연결된 센서의 값을 읽거나 씀

아두이노 디지털 명령어 기초

아두이노 디지털 명령어

- □지털 핀에 값을 쓸 때 사용하는 명령어
 ✓ 디지털 쓰기
- □지털 핀에서 값을 읽어 올 때 사용하는 명령어
 ✓ 디지털 읽기

▪ 0V와 5V 대신에 LOW와 HIGH라는 단어로 표시하는 이유

- 아두이노 디지털 명령에서는 값이 0 또는 1을 사용하며, 0 대신에 LOW, 1 대신에 HIGH 라는 단어를 사용함

• 디지털 핀에 값을 쓰는 방법

부품을 작동시킬 때 HIGH 라는 단어를 사용합니다.

예) 디지털 쓰기(13, HIGH)

부품 작동을 멈출 때 LOW 라는 단어를 사용합니다.

예) 디지털 쓰기(13, LOW)

코딩으로 LED 제어하기

• 시나리오를 아두이노 로봇으로 선택합니다.

- [1-1-4] 디지털 쓰기(High) 명령어를 Loop 함수 안에 드래그 하여 추가합니다.

■ 실행 버튼을 클릭합니다.

RED 컬러 LED가 켜져 있게 됩니다. 마우스로 화면이 이동시킬 수 있습니다.

13번 12번

11번

13번에 연결된 빨간색 LED가 켜진 상태로 표시됩니다.

기다리기 명령어를 추가합니다.

hello apps

헬로앱스

LED를 끄기 위해 디지털 쓰기(LOW) 명령어를 추가합니다.

블록 명령어를 Shift 키를 누른 체 이동하면 해당 명령어가 복사됩니다. 기다리기 명령어를 복사해 봅니다.

기다리기 명령어를 Shift 키를 누른 상태로 이동하면 복사되어 추가됩니다.

함수 Lo	юр		$\Theta \boxtimes$		
🔽 디지털 쓰기	13	(핀번호)	HIGH	(값)	\boxtimes
🗹 기다리기	1000	(밀리초)	\times		
🖌 디지털 쓰기	13	(핀번호)	LOW	(값)	\boxtimes
🗹 기다리기 📍	1000	(밀리초)	\boxtimes		
)	

완성된 코드입니다.

■ 실행 버튼을 클릭합니다.

LED를 더 빠른 속도로 점멸시키기

LED를 더 빠른 속도로 점멸시키기

LED를 더 빠른 속도로 점멸시키기 위해서는 어느 명령어의 값을 수정해 주어야 할까요?

0.1초 간격으로 점멸시키기

함수 Loo	p		Θ		
🗹 디지털 쓰기	13	(핀번호)	HIGH	(값)	\times
🗹 기다리기	100	(밀리초)	\mathbf{X}		
🔽 디지털 쓰기	13	(핀번호)	LOW	(값)	\boxtimes
🗹 기다리기	100	(밀리초)	\boxtimes		
)	

0.05초 간격으로 점멸시키기

함수 Loc	р			$\Theta \boxtimes$		
🔽 디지털 쓰기		13	(핀번호)	HIGH	(값)	\boxtimes
🗹 기다리기	50		(밀리초)	\boxtimes		
🗹 디지털 쓰기		13	(핀번호)	LOW	(Zt)	\boxtimes
🗹 기다리기	50		(밀리초)	\boxtimes		

신호등 만들어 보기

신호등 만들기

신호등 만들기

신호등 만들기

함수 Loo	p		Θ		
🖌 디지털 쓰기	11	(핀번호)	HIGH	(<u>3</u> .)	\boxtimes
🖌 기다리기	2000	(밀리초)	\boxtimes		
🖌 디지털 쓰기	11	(핀번호)	LOW	(값)	\boxtimes
🖌 디지털 쓰기	12	(핀번호)	HIGH	(값)	\boxtimes
🖌 기다리기	500	(밀리초)	\mathbf{X}		
🖌 디지털 쓰기	12	(핀번호)	LOW	(값)	\boxtimes
✓ 디지털 쓰기✓ 디지털 쓰기	12 13	(핀번호) (핀번호)	LOW HIGH	(값) (값)	X
 ✓ 디지털 쓰기 ✓ 디지털 쓰기 ✓ 기다리기 	12 13 2000	(편번호) (편번호) (밀리초)	LOW HIGH	(값) (값)	
 ✓ 디지털 쓰기 ✓ 디지털 쓰기 ✓ 기다리기 ✓ 디지털 쓰기 	12 13 2000 13	(편번호) (편번호) (밀리초) (편번호)	LOW HIGH X	(값) (값) (값)	

■ 실행 버튼을 클릭합니다.

신호등 만들기

▪ 실행 결과

신호등 만들어 보기 응용

신호등 만들기 응용 실습

신호등 만들기 응용 실습

hello apps

헬로앱스

[1-1-2] 디지털 읽기 명령어를 Loop 함수 안에 추가합니다.

디지털 읽기 명령어의 변수 값과 핀번호를 다음과 같이 수정합니다.

문자라인 출력(PrintLine) 명령어를 추가합니다.

기다리기 명령어를 추가한 후, 값을 100 밀리초 (0.1초)로 수정해 줍니다.

■ 실행 버튼을 클릭합니다.

버튼1(4번 핀)의 값을 화면에 출력하기

버튼1이 눌려지지 않은 상태에서는 0 값이 출력됩니다.

0은 LOW와 같은 의미입니다.

버튼1(4번 핀)의 값을 화면에 출력하기

버튼1(4번 핀)의 값을 화면에 출력하기

버튼1을 누르고 있으면 1 값이 읽혀집니다.

1은 HIGH와 같은 의미입니다.

버튼으로 LED 켜기

버튼으로 LED 켜기

hello apps

헬로앱스

버튼1을 누르면 13번 LED가 켜지고 그렇지 않으면 꺼지는 기능을 구현해 봅니다.

if – else 명령어로 값 비교하기

if와 else 블록을 이용하여 조건이 만족되는 경우와 그렇지 않은 경우에 따라서 명령어를

if – else 명령어 추가하기

if와 else 블록 명령어를 추가합니다. (기다리기 명령어 위에 순서대로 추가합니다)

if – else 명령어 추가하기

if 조건문의 수식을 다음과 같이 수정합니다.

LED 명령어 추가하기

hello apps

W

if 블록 및 else 블록안에 각각 LED를 켜고 끄는 명령어를 추가합니다.

if 블록 및 else 블록안에 각각 LED를 켜고 끄는 명령어를 추가합니다.

■ 실행 버튼을 클릭합니다.

버튼으로 LED 제어하기

4번 핀에 연결된 버튼1을 마우스로 클릭합니다.

hello apps

버튼1을 누르면 13번 LED가 켜지고 그렇지 않으면 LED가 꺼지게 됩니다.

LED 전체 켜기 실습

LED 전체 켜기 실습

3개의 LED를 모두 켭니다.

LED 전체 켜기 실습

3개의 LED를 모두 켭니다.

