아두이노 시뮬레이션 프로그래밍

v1.0

김영준 저

공학박사, 목원대학교 겸임교수 前 Microsoft 수석연구원

헬로앱스

http://www.helloapps.co.kr

07 동체인식 및 경보음 실행 장치 만들기

학습 목표

- 아날로그 PSD 거리센서를 이해하고 활용할 수 있다.
- 동체인식 장치의 작동원리를 이해하고 구현할 수 있다.
- 경보음 소리를 발생시킬 수 있으며, 침입탐지 장치에 적용할 수 있다.

실습 개요

- PSD 센서의 특징을 확인 한다.
- 디지털 거리계 장치를 구현한다.
- 동체인식 장치를 구현해 본다.
- tone 명령어를 이용해 경보음 소리를 구현해 본다.
- 침입 탐지 및 경보 장치를 구현해 본다.

7.1 준비하기

준비물

■ 아두이노 보드, 올인원 쉴드, 아날로그 PSD센서, LED 모듈, 스피커

시뮬레이션 상에서의 연결 정보

 시뮬레이션 상에서는 디지털 LED 소자가 각각 디지털 11번, 12번, 13번에 연결되어 있으며, 차단기에 부착된 전방 PSD 거리센서는 아날로그 4번에 연결되어 있다.

- 디지털 핀에 연결된 부품
 - 디지털 9번: 스피커
 - 디지털 11번: 초록색 LED
 - 디지털 12번: 노란색 LED
 - 디지털 13번: 빨간색 LED
 - 아날로그 4번: 차단기에 부착된 PSD 거리 센서

7.2 PSD 거리 센서값 확인하기

아날로그 PSD 거리 센서값

 아날로그 PSD 거리 센서를 활용하기 위해서는 첫 번째 절차로서 아날로그 센서인 PSD 센서의 값을 확인해 보는 단계이다. 아날로그 센서는 다음과 같이 1024 크기의 값의 범위를 가진다.

아날로그 센서 값의 범위

0 ~ 1023

아날로그 PSD 거리 센서의 값을 읽기 위해서는 다음과 같이 AnalogRead
 명령어를 이용한다.

🖌 a 🚍 AnalogRead 4 (핀번호) 🗋	🖌 a	AnalogRead	4	(핀번호)	\times
----------------------------	-----	------------	---	-------	----------

SPL 스크립트	스케치 코드
a0 = AnalogRead(핀번호)	int a = analogRead(핀번호);

PSD 센서값 읽기

 PSD 거리센서가 어떠한 특성으로 작동하는 지 확인하기 위해 다음의 코드 를 실행하여 결과를 기록해 본다.

Function	Setup		$\exists \boxtimes$	
원쪽에 있는 이곳에 미	· 명령어 아이콘을 · 우스로 드래그하여 ·	넣어 주세요.		
Function	Loop		ЭX	
🖌 a	= AnalogRead	4 (핀번호)	\boxtimes
PrintLine	а			
Delay	100	(밀리초)	\boxtimes	

SPL 스크립트	스케치 코드
SPL 스크립트 void setup() { } void loop() { //아날로그 0번 핀에서 값을 읽어서 //변수에 저장한다.	스케치 코드 void setup() { Serial.begin(115200); } void loop() { //아날로그 0번 핀에서 값을 읽어서
a = AnalogRead(4) //한 라인씩 값을 콘솔에 출력한다.	//변수에 저장한다. int a = analogRead(4); //하 라이씨 가은 코속에 초려하다

PrintLine(a)	Serial.println(a);
//0.1초씩 기다린다.	//0.1초씩 기다린다.
Delay(100)	delay(100);
}	}

 위의 코드를 실행시킨 한 후, 다음과 같이 방향키를 이용하여 로봇을 앞으 로 전진시킨다.

방향키를 이용하여 로봇을 앞으로 전진시킨다.

※ 주의 사항

- PSD 센서는 유효 측정 거리가 10cm ~ 80cm이다. 따라서 손을 너무 가까
 이 접근시키지 말고 10cm에서 80cm 사이를 움직여 본다.
- PSD 센서는 대상 물체와의 거리가 멀수록 값이 작고 가까울수록 값이 커 지는 특성이 있으므로 이 값의 특성에 유의하기 바란다.
- 센서 앞에 대상 물체가 없는 경우는 100 이하의 작은 값이 읽혀지며, 대상 물체가 센서 쪽으로 가까이 접근할 수록 900 이상의 값으로 점차 증가한 다.

7.3 디지털 거리계 만들기

구현하기

map() 함수를 이용하면 PSD 센서 값을 간단히 거리값으로 변환시킬 수 있다.
 다. 정확도는 낮지만 거리계 처럼 유사한 값을 출력시킬 수 있다.

Function	Setup		
원쪽에 있 이곳에	는 명령이 아이콘을 마우스로 드레그하여	넣어 주세요.	
Function	Loop		
	= Map	a 0 1023 800 100	$\overline{\mathbf{X}}$
Print	а		
PrintLine	e "mm"		
Delay	100	(밀리초) 🔀	

SPL 스크립트	스케치 코드
void setup()	void setup()
{	{
	pinMode(13, OUTPUT);
}	Serial.begin(115200);
	}
void loop()	
{	void loop()
a = AnalogRead(4)	{
a = map(a, 0, 1023, 800, 100)	int a = analogRead(4);
	a = map(a, 0, 1023, 800, 100);
Print(a)	
PrintLine("mm")	Serial.print(a);

	Serial.println("mm");
Delay(100)	
}	delay(100);
	}

- 위의 코드에서 map 함수는 0 ~ 1023 범위로 읽혀지는 PSD 센서값을 800
 ~ 100mm 거리로 변환시키는 기능을 수행한다.
- 위의 코드를 실행시킨 한 후, 다음과 같이 방향키를 이용하여 로봇을 앞으 로 전진시킨다.

아날로그 4번 PSD 거리 센서

방향키를 이용하여 로봇을 앞으로 전진시킨다.

7.4 동체인식 장치 구현하기

움직임이 감지되면 3초간 LED 켜기

- 아파트 현관이나 엘리베이터 앞에는 동체인식 장치가 천장에 부착되어 있
 어 사람들의 움직임이 감지되면 자동으로 등이 켜지는 기능이 작동한다.
- PSD 센서를 이용해 이와 유사한 기능을 구현할 수 있는데, PSD 센서 앞
 에 움직임이 감지되면 LED가 3초간 켜져 있도록 하는 기능을 구현해 보
 자.

Function	Setup	Θ	X
원쪽에 있는 이곳에 미	- 명령어 아이콘을 나우스로 드래그하여	넣어 주세요.	
			-
Function	Loop		×
🖌 a	= AnalogRead	4 (핀번호)	\mathbf{X}
PrintLine	а		
if	a > 500		$\Theta \boxtimes$
Digital	Write 13	(핀번호) HIG	H (같) 🗙
🖌 Delay	3000	(밀리초)	\boxtimes
🖌 Digital	Write 13	(핀번호) LOV	₩ (盐)
Delay	100	(밀리초)	a

SPL 스크립트	스케치 코드
void setup()	void setup()
ł	{
	pinMode(13, OUTPUT);
}	Serial.begin(115200);
	}
void loop()	
{	void loop()
a = AnalogRead(4)	{
PrintLine(a)	int a = analogRead(4);
	Serial.println(a);
//움직이는 대상을 감지한다.	
if (a > 500)	//움직이는 대상을 감지한다.
{	if (a > 500)
//LED를 켠다	{
DigitalWrite(13_HIGH)	· //LED륵 켠다
	digitalWrite(13_HIGH):
//3초가 기다리다	
Delay(3000)	//3초가 기다리다
Detay(0000)	dolow(2000):
	ueiay(3000),
//LED를 근덕. Di-it-1W/-it-(12, LOW)	
Digital write(15, LOW)	//LED글 한다.
}	$\operatorname{digitativirite}(13, LOW),$
	}
Delay(100)	
}	delay(100);
	}

■ 위의 코드가 실제 실행된다면 어떠한 문제점이 발생할지 예측해 보자.

※ 주의 사항

- ※ 실생활에 적용되는 모든 센서는 아주 짧은 시간 간격으로 계속 감지되어야 한다.
- ※ 위의 예제에서는 중간에 delay(3000) 이라는 아주 큰 시간 만큼 실행을 멈 추는 기능이 들어가 있다. 3초 만큼의 시간 동안 센서 감지가 멈추어 있게 되는 문제가 발생한다.
- ※ 실 생활에 적용되기 위한 프로그램을 작성할 때에는 프로그램 중간에 위와 같이 큰 시간 동안 실행을 멈추는 delay 명령어를 사용하는 것을 가급적 자제해야 한다. delay 명령어는 프로그램 맨 아래에 아주 짧은 간격으로 가 능한 한 번 정도 사용해 주면 된다.

7.5 움직임을 계속 감지하는 동체인식 장치

움직이는 동안에는 계속 LED가 켜져 있도록 하기

- 이번에는 기능을 보완하여 LED가 켜져 있는 동안에도 PSD 센서 앞에서 대상 물체가 움직이면 LED가 계속 켜져 있도록 한다.
- 즉, 대상 물체가 PSD 센서 앞에서 계속 움직일 경우에는 LED가 계속 켜 져 있고, 센서 앞에 대상 물체가 없을 경우에는 마지막 감지 이후 3초 후 에 LED가 꺼지도록 한다.
- delay 명령어는 프로그램 아래에 delay(100) 명령어 한 번만 오도록 기능
 을 설계해 본다.

나누어서 기능을 수행하기

- 만약 3초간 어떠한 기능을 수행해야 한다면, 이를 0.1초 간격으로 30번 수 행하면 동일한 결과를 얻을 수 있다.
- 즉 LED를 3초간 켜기 위해서 delay(3000) 대신에 delay(100)을 30번 반복 하면 동일한 효과가 발생을 하는 것이다.

loop() 반복을 이용해 LED를 3초간 겨기

 아래의 코드는 loop() 함수가 반복되는 특성을 이용해 LED가 3초간 켜져 있도록 하는 프로그램을 보여준다.

	cnt = 30				\mathbf{X}	
Function	Setup			Θ		
왼쪽에 있는 이곳에 미	- 명령어 아이 바우스로 드래	콘을 그히여 '	클어 주세요.			
Eurotion	Leen					
Function	Loop					
if	cnt > 0				$ \ominus [$	<
Expres	sion cnt =	cnt - 1				\boxtimes
🖌 Digital	Write	13	(핀번호)	HIGH	(값)	\times
else 🔾 🖂						
Digital	Write	13	(핀번호)	LOW	(값)	\times
✓ Delay	100		(밀리초)			

SPL 스크립트	스케치 코드
cnt = 30	int cnt = 30;
void setup() { }	void setup() { pinMode(13, OUTPUT); }
void loop()	void loop()
{	{
if (cnt > 0)	if (cnt > 0)
{	{
cnt = cnt - 1	cnt = cnt - 1;
//LED를 켠다.	//LED를 켠다.
DigitalWrite(13, HIGH)	digitalWrite(13, HIGH);
}	}
else	else
{	{
//LED를 끈다.	//LED를 끈다.
DigitalWrite(13, LOW)	digitalWrite(13, LOW);
}	}
//0.1초를 기다린다.	//0.1초를 기다린다.
Delay(100)	delay(100);
}	}

 cnt 값은 30으로 초기화 되어 있고 loop 함수가 실행되면 값이 1씩 감소 한다. 결국 30번 정도 반복하면 값이 0이 되며, LED가 꺼지게 된다. 0.1 초를 30번 반복하는 효과를 cnt 변수를 통해서 구현한 것이다.

※ 주의 사항

* cnt 변수 이름은 다른 이름으로 수정하여 사용해도 된다. 단지 count 라는 의미의 단어를 줄여서 사용한 것이다.

구현하기

■ 아래 프로그램의 기능을 완성해 본다.

Expression	cnt = ()				\times	
Function	Setup			Ξe			
왼쪽에 있는 이곳에 미	· 명령어 나우스로	아이콘을 드래그하(계 넣어 주	세요.			
	1						
Function	Loop						
🖌 a	= ^	nalogRea	4	(핀번	!호)	\boxtimes	
if	a > 5	00			($\exists \boxtimes$]
Expres	sion	cnt = 30					\times
					-14	20	2
if	cnt >	0			($\exists \boxtimes$	
	sion o	cnt = cnt -	1				\times
PrintLi	ne	cnt					
Digital	Write	13	(편	번호) 🖁	ligh	(값)	\boxtimes
else			(-				
	Write	13	(刑	번호) L	OW	(값)	
🖌 Delay	1	00	(밀리:	초)	\times		

SPL 스크립트	스케치 코드
cnt = 0	int cnt = 0;
<pre>void setup() { }</pre>	<pre>void setup() { pinMode(13, OUTPUT); }</pre>
void loop() { a = AnalogRead(4) //움직이는 대상을 감지한다. if (a > 500) { cnt = 30 }	void loop() { int a = analogRead(4); //움직이는 대상을 감지한다. if (a > 500) { cnt = 30; }
<pre>if (cnt > 0) { cnt = cnt - 1 PrintLine(cnt) Difference (10, 10, 10, 10, 10, 10, 10, 10, 10, 10,</pre>	if (cnt > 0) { cnt = cnt - 1; //LED를 켠다.
DigitalWrite(13, HIGH) } else { //LED를 끈다. DigitalWrite(13, LOW) }	digitalWrite(13, HIGH); } else { //LED를 끈다. digitalWrite(13, LOW); }
//0.1초를 기다린다. Delay(100) }	//0.1초를 기다린다. delay(100); }

7.6 경보음 소리 발생시키기

tone 명령어로 경보음 소리 발생시키기

- tone 명령어에서 진동수 값을 아주 빠르게 증가시켜 주거나 감소시켜 주면
 사이렌 소리나 경보음 소리와 같은 효과를 발생시킬 수 있다.
- tone 실습시 컴퓨터에서 소리가 연주될 수 있는 환경인지 확인한다. 노트 북이 아닌 데스크탑의 경우, 스피커가 없는 경우에는 스피커나 헤드폰을 미리 연결해 놓는다.
- 다음의 코드를 실행하여 어떠한 소리가 발생하는 지 확인해 본다.

Function	Setup			Θ			
원쪽에 있는 이곳에 대	- 명령이 아 우스로 도	이콘을 배그하여 넣어	주세요.				
Function	Loop			Θ			
for i	를	0 부터	100	까지 <mark>i++</mark>	실행	$\Theta \boxtimes$	
Expres	sion <mark>f=</mark> i	* i			Þ	\leq	
Tone	9	(핀번호)	f	(진동수)	100	(지속시간)	\boxtimes
🖌 Delay	10)	(밀리초)	\boxtimes			

SPL 스크립트	스케치 코드
void setup()	void setup()
{	{
}	}
void loop()	void loop()
{	{
for (i = 0; i <100; i++)	for (int i = 0; i <100; i++)
{	{
f = i * i	int f = i * i;
tone(9, f, 100)	tone(9, f, 100);
delay(10)	delay(10);
}	}
}	}

실습

- ▶ delay 간격을 수정하여 다른 소리가 발생하도록 시도해 본다.
- 진동수 값이 증가하다가 감소하는 기능을 추가하여 다양한 경보음 소리 패 턴을 구현해 본다.

7.7 보안 경보 장치 만들기

침입 탐지 장치

 PSD 센서와 경보음 소리 발생 기능을 이용하여 아날로그 4번 PSD 센서 앞에 대상 물체가 감지되면 경보음 소리가 실행되는 기능을 구현해 보자.

Function	Setup 🕞 🖂
원쪽에 있는 이곳에 대	- 명령이 아이콘을 바우스로 드래그하여 넣어 주세요
Function	
🖌 a	= AnalogRead <mark>4 (</mark> 편변호) 🔀
if	a > 500
for	i 를 0 부터 100 까지 i++ 실행 🔶 🔀
Exp	pression f = i * i
🗹 Ton	ne 9 (핀번호) <mark>f (</mark> 전동수) 100 (지속시간) 🔀
Del	ay 10 (밀리초) 🔀
🖌 Delay	100 (밀리초) 🔀
and the second s	

```
SPL 스크립트
                                                           스케치 코드
void setup()
                                           void setup()
{
                                           {
}
                                           }
void loop()
{
                                           void loop()
  a = AnalogRead(4)
                                           {
                                              int a = analogRead(4);
  //움직이는 대상을 감지한다.
  if ( a > 500 )
                                              //움직이는 대상을 감지한다.
  {
                                              if ( a > 500 )
        for (i = 0; i <100; i++)
                                              {
        {
                                                    for (int i = 0; i <100; i++)
                f = i * i
                                                    {
                tone(9, f, 100)
                                                            int f = i * i;
                delay(10)
                                                            tone(9, f, 100);
        }
                                                            delay(10);
  }
                                                    }
                                              }
  delay(100)
                                              delay(100);
}
                                           }
```